
Momentum and the Rocket Equation 
 

The rocket equation gives an explanation of how the gas ejected from the nozzle is used 

to propel the rocket forwards.  In its classical form it has little practical use in model 

rocketry, as it assumes no drag and no gravity.  It does, however, provide a useful means 

of understanding the relationships between the mass of the rocket, mass of fuel, exhaust 

velocity and the “burn out” velocity of a rocket. 

 

This short paper considers the idea of momentum, and examines how an understanding of 

momentum can be used to derive the rocket equation.  It then examines some of the 

design “trade offs” in building a rocket.  

Momentum 

 

The behaviour of a rocket motor can best be explained by understanding the principle of 

conservation of momentum. 

 

We can consider a rocket at some point during its flight as having a mass of  m with a 

little bit of fuel of mass dm about to leave the rocket.  At this point the rocket has a 

velocity v.  An instant later, the element of propellant has left the nozzle at the exhaust 

velocity (relative to the rocket) of  -ve.  Why the minus sign? Well the bit of propellant is 

travelling in the opposite direction to the rocket, and positive velocities are in the 

direction of travel of the rocket so anything travelling in the opposite direction is 

negative. 

 

 
 

As a result of ejecting this small bit of propellant the rocket increases its velocity by a 

small amount, +dv.  This is positive because it’s in the direction of travel of the rocket.  

Conservation of momentum tells us that the momentum before the propellant is ejected is 

the same as the momentum after the propellant is ejected.  Thus: 

 

Initial momentum = (m + dm)v 



Final momentum =  m(v + dv) – dm ve 

 

As conservation is conserved, the initial momentum and the final momentum are equal, 

thus: 

 

(m + dm)v = m(v + dv) – dm ve 

 

If we rearrange this, ignore second order terms, and integrate over the duration of the 

burn we find that: 
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Where ln denotes the natural logarithm.  This is the classic form of the rocket equation.  

The initial mass of the rocket is the total structural, payload and fuel mass, whereas the 

final mass assumes that all the fuel has been burned.   

 

The Rocket Equation 
 

How can we use this equation in practice?  Imagine we have a rocket which has a “dry 

mass” mr , a payload mass mp and starts with propellant of mass mf  If the rocket burns 

the propellant and ejects it from the nozzle at a rate ve, then the “burn out” velocity vb 

obtained by burning all the propellant is: 
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So what does this tell us?  Well for a start, if we have a way of calculating the final, or 

“burn out” velocity of a rocket  which depends on the exhaust velocity, the mass of fuel 

and the mass of the rocket.  The exhaust velocity depends on the design of the motor, and 

the amount of fuel and mass of the rocket depend on the design of the rocket. 

 

Lets explore this equation further.  If the amount of fuel carried is very small compared to 

the mass of the rocket, then the bit in brackets has a value very close to 1.  Since the 

natural logarithm of 1 is zero (try it on your calculator), we can see that the change in 

velocity is zero.  This makes sense, as a rocket with very little fuel is not going to go very 

far.  Let’s consider the other “limiting case”, a rocket which is almost entirely fuel.  In 

this case mf is much greater than mr so the bit within the brackets gets close to infinite.  

As the natural log of infinite is a very large number, we end up with a velocity many 

times the exhaust velocity.  This also makes sense, as a long burn will continuously 

accelerate the rocket to a very high velocity. 

 

It can be seen that there is a relationship between the performance of a rocket and the 

relative masses of the structure and fuel.  To explore this further, we need to  

 



We can define two useful terms which can be used to quantify this relationship: the 

payload ratio and the structural ratio.  The payload ratio, denoted π, is simply the mass 

of any payload carried by the rocket to the total mass of the rocket: 
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The structural ratio, denoted ε, is simply the ration of the structural mass of the rocket to 

the total mass of the rocket: 
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Manipulating equation 1 we get: 
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There is thus a maximum velocity that can be obtained by a rocket, and that occurs when 

there is no payload, in other words when π = 0.  This result is intuitively correct.  The 
value of this maximum velocity increases as the structural ratio decreases.  This, too, is 

intuitively correct as the structural ratio with no payload present indicates how much of 

the rocket is structural.  As the remainder of the mass comprises propellant it is easy to 

see why a low structural ratio results in a higher burnout velocity.  A typical satellite 

launcher comprises about 80% propellant at launch. 

 

MULTISTAGE ROCKETS 

 

So far we’ve considered single stage rockets, how can we apply this to multistage 

rockets?  The trick is to recognise that all the stages above the one which is burning are 

its “payload”.  Each stage thus has a separate payload ratio, and it can be shown that the 

payload ratio for the whole rocket is simply the product of all the payload ratios. For 

example, if we have a rocket with 3 stages the payload ratio for the whole rocket is: 

 

321 ππππ ××=total  

 

Similarly for a rocket with N stages, the payload ratio is: 

 

Ntotal πππππ ××××= K321  

 

It is not intended to prove it in this essay, but the burn out velocity of a multistage rocket 

can be maximised by making the payload ratio of all the stages identical.  Practically, 

such a rocket cannot be readily built as the designer will reach a state for low values of N 

where the stages become so massive that the rocket ceases to be affordable.  It can be 



shown that, for any given exhaust velocity ϖε, and payload ratio π, the advantages of 
more than 4 stages are negligible. 

 


